M.MATH LINEAR ALGEBRA

100 Points

Notes.

(a) Begin each answer on a separate sheet and ensure that the answers to all the parts to a question are arranged contiguously.

- (b) Assume only those results that have been proved in class. All other steps should be justified.
- (c) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers \mathbb{C} = complex numbers.

1. [15 points] For the matrix $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ find a matrix P such that PAP^{-1} is diagonal and give a formula for A^{30} .

2. [15 points] Let F be a field and n > 0 an integer. Give an example of two $n \times n$ matrices A, B that are not similar, but whose characteristic polynomials are equal.

3. [15 points] Let F be a field. Given two linearly independent collections of vectors $v_1, \ldots, v_r \in F^n$ and $w_1, \ldots, w_r \in F^n$, show that there exists an invertible $n \times n$ matrix A such that $Av_i = w_i$ for $i \leq r$.

4. [20 points]

Let A be an $m \times n$ matrix and let X be an invertible $m \times m$ matrix. Set A' = XA.

- (i) Show that the columns C_{i_1}, \ldots, C_{i_r} of A are linearly independent iff the corresponding columns $C'_{i_1}, \ldots, C'_{i_r}$ of A' are so. Likewise, show that C_{i_1}, \ldots, C_{i_r} span the column space of A iff the corresponding ones of A' have the same property.
- (ii) Deduce that if the pivot entries in (reduced) row echelon form of A are in columns indexed by j_1, \ldots, j_r , then the corresponding columns C_{j_1}, \ldots, C_{j_r} of A form a basis of the column space of A.

5. [15 points] Show that the equation AB - BA = I has no solution in $n \times n$ matrices A, B over \mathbb{R} . Show that over the finite field $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$, there is a solution for A, B for n = 2.

- 6. [20 points] Let v_1, \ldots, v_r be mutually orthogonal (nonzero) vectors in \mathbb{R}^n .
 - (i) If W is the subspace $\{w \in \mathbb{R}^n | v_i \cdot w = 0 \forall i\}$ and $V = \text{Span}(v_1, \dots, v_r)$, then show that dimension of W is n r and that $V \oplus W = \mathbb{R}^n$.
 - (ii) Show that any collection of mutually orthogonal vectors in \mathbb{R}^n is a part of a basis consisting of mutually orthogonal vectors.